B. Sc. B.Ed. SEMESTER I EXAMINATION 2020
 Subject: Physics
 CC 1 (Mathematical Physics - I)

FULL MARKS: 50
TIME ALLOWED: 2 HOURS
$\underline{\text { Answer any Ten (10) questions }}$

1. (i) Write down the expression for divergence of a vector in spherical polar and cylindrical coordinates.
(ii) Prove that the adjoint of a diagonal matrix is a diagonal matrix. (3 marks)
2. (i) Calculate $\frac{d y}{d x}$ if $e^{x y}+y \ln x=\cos 2 x$.
(ii) Prove that $\frac{d^{n}}{d x^{n}}\left(x^{2} \sin x\right)=\left[x^{2}-n(n-1)\right] \sin \left(x+\frac{n \pi}{2}\right)-2 n x \cos \left(x+\frac{n \pi}{2}\right)$ (3 marks)
3. State and prove Stokes theorem.
4. (i) If $f(x, y)=x^{2} \tan ^{-1}\left(\frac{y}{x}\right)$, then evaluate $\frac{\partial^{2} f}{\partial x \partial y}$ at the point $(1,1)$. (2 marks)
(ii) Prove that $\boldsymbol{\nabla}^{2} r^{n}=n(n+1) r^{n}$ where n is an integer. (3 marks)
5. If $\boldsymbol{\nabla} \cdot \vec{E}=0, \boldsymbol{\nabla} \cdot \vec{H}=0, \boldsymbol{\nabla} \times \vec{E}=-\frac{\partial H}{\partial t}, \boldsymbol{\nabla} \times \vec{H}=\frac{\partial E}{\partial t}$, then show that \vec{E} and \vec{H} satisfies wave equation of the form $\nabla^{2} u=\frac{\partial^{2} u}{\partial t^{2}}$.
(5 marks)
6. (i) Define a Hermitian matrix.
(2 marks)
(i) Prove that all the eigen values of a hermitian matrix are real. marks)
7. (i) Verify whether the following matrix is diagonalizable:

$$
X=\left(\begin{array}{ccc}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right)
$$

(ii) Verify whether the vectors $\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right),\left(\begin{array}{c}2 \\ -3 \\ 1\end{array}\right),\left(\begin{array}{c}5 \\ -8 \\ 1\end{array}\right)$ forms a basis set for 3-dimensional real space.
8. Prove that if A and B are Hermitian matrices,
(i) $A B+B A$ is Hermitian
(ii) $A B-B A$ is Skew Hermitian.
9. Prove $\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \vec{A})=-\nabla^{2} \vec{A}+\nabla(\nabla \cdot \vec{A})$ (5 marks)
10. (i) What do you mean by an irrotational vector.
(1 marks)
(ii) Find out the values of a, b and c for which the $\vec{A}=(x+2 y+a z) \hat{i}+$ $(b x-3 y-z) \hat{j}+(4 x+c y+2 z) \hat{k}$ will be irrotational.
(4 marks)
11. Consider the following: $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=2 \ln x$
(i) Explain with reason if the given equation is linear and homogeneous. (2 marks)
(ii) Find out the general solution of it.
12. Consider the following equation: $e^{-x^{2}} \frac{d y}{d x}-\left(2 x y e^{-x^{2}}+x e^{-x^{2}}\right)=0$
(i) Explain with reason whether the equation is exact.
(2 marks)
(ii) Find out the general solution of the equation.
(3 marks)

